Unit Root Quantile Autoregression Inference

نویسندگان

  • ROGER KOENKER
  • ZHIJIE XIAO
چکیده

We study statistical inference in quantile autoregression models when the largest autoregressive coefficient may be unity. The limiting distribution of a quantile autoregression estimator and its t-statistic is derived. The asymptotic distribution is not the conventional Dickey-Fuller distribution, but a linear combination of the Dickey-Fuller distribution and the standard normal, with the weight determined by the correlation coefficient of related time series. Inference methods based on the estimator are investigated asymptotically. Monte Carlo results indicate that the new inference procedures have power gains over the conventional least squares based unit root tests in the presence of non-Gaussian disturbances. An empirical application of the model to US macroeconomic time series data further illustrates the potential of the new approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copula-Based Quantile Autoregression

Parametric copulae are shown to be an attractive device for specifying quantile autoregressive models for nonlinear time-series. Estimation of local, quantile-specific models offers some salient advantages over classical global parametric approaches. Consistency and asymptotic normality of the proposed estimators are established, leading to a general framework for inference and model specificat...

متن کامل

A Study of Testing Mean Reversion in the Inflation Rate of Iran’s Provinces: New Evidence Using Quantile Unit Root Test

T his paper is to examine the mean reverting properties of inflation rates for Iran’s 25 provinces over the period from 1990:4 to 2017:7. To the end, we use various conventional univariate linear and non-linear unit root tests, as well as quantile unit root test by Koenker and Xiao (2004). Results of conventional unit root tests indicate that the null hypothesis of the unit root test...

متن کامل

Quantile Autoregression

We consider quantile autoregression (QAR) models in which the autoregressive coefficients can be expressed as monotone functions of a single, scalar random variable. The models can capture systematic influences of conditioning variables on the location, scale and shape of the conditional distribution of the response, and therefore constitute a significant extension of classical constant coeffic...

متن کامل

Copula-based nonlinear quantile autoregression

Parametric copulas are shown to be attractive devices for specifying quantile autoregressive models for nonlinear time-series. Estimation of local, quantile-specific copula-based time series models offers some salient advantages over classical global parametric approaches. Consistency and asymptotic normality of the proposed quantile estimators are established under mild conditions, allowing fo...

متن کامل

Issues on quantile autoregression ∗

We congratulate Koenker and Xiao on their interesting and important contribution to the quantile autoregression (QAR). The paper provides a comprehensive overview on the QAR model, from probabilistic aspects, to model identification, statistical inferences, and empirical applications. The attempt to integrate the quantile regression and the QAR process is intriguing. It demonstrates surprisingl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004